Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Biotechnol ; 385: 58-64, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458539

RESUMEN

In this study, novel biomaterial that consisted entirely of bacterial products was developed with the approach of designing cost effective material for biomedical applications. With this aim, bacterial cellulose membranes (BCMs) which synthesized by Komagataeibacter intermedius were produced. Moreover, to impart antimicrobial properties to enhance the capacity of BCMs for biomedical usage, prodigiosin (PG) pigment of Serratia marcescens which presents wide range of antimicrobial activities was loaded to BCMs. Firstly, high yield of PG production was achieved, and then crude pigment was purified with silica gel column. The purified PG was characterized with thin layer chromatography and UV-visible spectrometry. The antimicrobial effect of the produced pigment on Gram-positive and negative bacteria and a yeast was investigated. The success of modification in PG-modified BCMs has been demonstrated by FTIR and SEM. Moreover, antimicrobial and antiadhesive ability of novel PG-BCMs were examined with disc diffusion and plate counting methods. As a result, it was established that PG-BCMs were able to inhibit the growth of all tested microorganisms. Furthermore, excellent antiadhesive effect was observed for the tested microorganisms with the inhibition rates of 82.05-96.25 %. Finally, cytotoxicity test with L929 cell line demonstrated that PG-BCM is biocompatible at a level that can be applied in in vivo studies.


Asunto(s)
Antiinfecciosos , Prodigiosina , Prodigiosina/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Serratia marcescens/química , Serratia marcescens/metabolismo , Materiales Biocompatibles/farmacología , Celulosa/metabolismo
2.
J Biotechnol ; 359: 65-74, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36184003

RESUMEN

Heavy metal contamination is a global issue, with cadmium (Cd2+) and its treatment becoming major environmental challenge that could be solved by microbial restoration, an eco-friendly technique. Serratia marcescens KMR-3 exhibits high tolerance and removal rate of Cd2+ (≤500 mg/L). Here, we aimed to explore mechanisms underlying tolerance to and removal of Cd2+ by KMR-3. Scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry were conducted to analyze characteristics of the KMR-3 biofilm and Cd2+ combined forms. The results revealed varying degrees of cell adhesion, membrane thickening, and shrinkage on the surface of the bacteria. The binding elements, electronic binding energy, and functional groups on the surface of the bacteria exhibited changes. Furthermore, the biofilm amount following treatment with Cd2+ was 1.5-3 times higher than that in the controls, treatment with Cd2+ substantially enhanced biofilm generation and increased Cd2+ adsorption. Cd2+ adsorption by its own secondary metabolite prodigiosin produced by KMR-3 was enhanced by 19.5 % compared with that observed without prodigiosin. Through transcriptome sequencing and RT-qPCR, we observed that Znu protein-chelating system regulated gene expression (znuA, znuB, and znuC), and the efflux mechanism of the P-type ATPase regulated the expression of genes (zntA, zntB, and zntR), which were significantly enhanced. Through the combined action of various strategies, KMR-3 demonstrated a high tolerance and removal ability of Cd2+, providing a theoretical basis to treat Cd2+ pollution.


Asunto(s)
Metales Pesados , ATPasas Tipo P , Serratia marcescens/genética , Serratia marcescens/química , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Cadmio , Metales Pesados/metabolismo , ATPasas Tipo P/metabolismo
3.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956931

RESUMEN

Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards Serratia marcescens, including production strategies at a laboratory level and scale-up to bioreactors. Promising results of its biological activity have been reported to date, and the advances and applications in bionanocomposites are the most recent strategy to potentiate and to obtain new carriers for the transport and controlled release of prodigiosin. Prodigiosin, a bioactive secondary metabolite, produced by Serratia marcescens, is an effective proapoptotic agent against bacterial and fungal strains as well as cancer cell lines. Furthermore, this molecule presents antioxidant activity, which makes it ideal for treating wounds and promoting the general improvement of the immune system. Likewise, some of the characteristics of prodigiosin, such as hydrophobicity, limit its use for medical and biotechnological applications; however, this can be overcome by using it as a component of a bionanocomposite. This review focuses on the chemistry and the structure of the bionanocomposites currently developed using biorenewable resources. Moreover, the work illuminates recent developments in pyrrole-based bionanocomposites, with special insight to its application in the medical area.


Asunto(s)
Nanocompuestos , Prodigiosina , Antibacterianos/química , Reactores Biológicos , Prodigiosina/química , Prodigiosina/farmacología , Serratia marcescens/química
4.
Microb Cell Fact ; 21(1): 151, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907859

RESUMEN

BACKGROUND: The complexity, toxicity and abundance of frying oil waste (FOW) render it difficult to be degraded biologically. The aim of the present work was to valorize FOW and investigate the potential use of the produced biosurfactant by Serratia marcescens N2 (Whole Genome sequencing accession ID SPSG00000000) as a biodetergent. RESULTS: Serratia marcescens N2 demonstrated efficient valorization of FOW, using 1% peptone, 20% FOW and 8% inoculum size. Gene annotation showed the presence of serrawettin synthetase indicating that the produced biosurfactant was serrawettin. Zeta potential and Fourier Transform Infrared (FTIR) spectroscopy indicate that the biosurfactant produced was a negatively charged lipopeptide. The biosurfactant reduced the surface tension of water from 72 to 25.7 mN/m; its emulsification index was 90%. The valorization started after 1 h of incubation and reached a maximum of 83.3%. Gamma radiation was used to increase the biosurfactant yield from 9.4 to 19.2 g/L for non-irradiated and 1000 Gy irradiated cultures, respectively. It was noted that the biorecovery took place immediately as opposed to overnight storage required in conventional biosurfactant recovery. Both chemical and functional characteristics of the radiation induced biosurfactant did not change at low doses. The produced biosurfactant was used to wash oil stain; the highest detergency reached was 87% at 60 °C under stirring conditions for 500 Gy gamma assisted biorecovery. Skin irritation tests performed on experimental mice showed no inflammation. CONCLUSION: This study was able to obtain a skin friendly effective biodetergent from low worth FOW using Serratia marcescens N2 with 83% efficient valorization using only peptone in the growth media unlike previous studies using complex media. Gamma radiation was for the first time experimented to assist biosurfactant recovery and doubling the yield without affecting the efficiency.


Asunto(s)
Serratia marcescens , Tensoactivos , Animales , Lipopéptidos/metabolismo , Ratones , Peptonas/metabolismo , Serratia marcescens/química , Tensión Superficial , Tensoactivos/metabolismo
5.
Bioengineered ; 13(6): 14227-14258, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35734783

RESUMEN

Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.


Asunto(s)
Antineoplásicos , Prodigiosina , Antibacterianos/farmacología , Antifúngicos , Humanos , Prodigiosina/farmacología , Serratia marcescens/química
6.
Biomed Res Int ; 2022: 4053074, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35509712

RESUMEN

Prodigiosin (Pg), a secondary metabolism produced by numerous bacterial species, is known as anticancer, antibacterial, antifungal, immunosuppressant, antioxidant, antimalarial properties. Pg has been tested for antitumor activity in many different cancer cell lines but studies in LU-1, KB cell lines, and tumor-bearing mice are still limited. In this study, Serratia marcescens QBN VTCC 910026 strain (GenBank: KX674054.1) was mutated using Ethyl Methanesulfonate (EMS) to increase the production of Pg. One strain known as EMS 5 was capable of increasing prodigiosin biosynthetic yield by 52% when compared to the wild-type strain. Red bacterial pigmented colonies containing Pg were collected from solid media, lysed with acetone, purified with toluene: ethyl acetate at a ratio of 9: 1 (v/v), and then used to evaluate the potential anticancer activity. The purity of Pg was confirmed using a high-performance liquid chromatography (HPLC) method which indicated a 98% rate. Pg chemical formula which was determined using 1H-NMR and 13C-NMR spectroscopy, confirmed as prodigiosin (Pg). Human breast cancer cell lines MCF-7, oropharyngeal cancer KB, and particularly lung cancer LU-1 in vitro were used to test the anticancer activity of purified Pg compound. It showed a strong inhibitory ability in all the cancer cell lines. Furthermore, the isolated Pg had capable of inhibiting tumor growth, the tumor volume decreased by 36.82%, after 28 days. The results indicated that the bacterial prodigiosin from variants Serratia marcescens QBN VTCC 910026 strain is an encouraging fragment suitable for therapeutic applications.


Asunto(s)
Prodigiosina , Serratia marcescens , Animales , Antibacterianos/farmacología , Antifúngicos/metabolismo , Ratones , Prodigiosina/metabolismo , Prodigiosina/farmacología , Metabolismo Secundario , Serratia marcescens/química
7.
Microbiol Spectr ; 10(3): e0060722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35435740

RESUMEN

Prodigiosin possesses antibacterial activities, but as a highly hydrophobic compound, it raised the question about how Serratia marcescens introduce this compound to other microbes. Here, we demonstrate that the production of prodigiosin by newly isolated S. marcescens RH10 correlates with its antibacterial activity against a multidrug-resistant strain of S. aureus, with this pathogen's viability decreasing 6-log over 24 h. While S. marcescens RH10 does secrete membrane vesicles that carry prodigiosin, this antibiotic was not active in this form, with 5 mg/L prodigiosin leading to only a 1.22-fold reduction in the S. aureus viability while the same quantity of purified prodigiosin led to a 2800-fold reduction. Contact assays, however, showed increased activity, with a 3-log loss in the S. aureus viabilities in only 6 h as long as de novo production of prodigiosin occurred. The role of prodigiosin was confirmed further by generating an isogenic ΔpigA mutant in S. marcescens RH10, based on the draft genome sequence reported here, to inhibit the synthesis of prodigiosin. In all experiments performed, this mutant was unable to kill S. aureus. Finally, the possibility that the type VI secretion system present in S. marcescens may also be important was also explored as it is known to be used by this strain to kill other microbes. The results here, however, found no obvious activity against S. aureus. In conclusion, the results presented here show prodigiosin requires both cell-to-cell contact and de novo synthesis for it to be effective as an antibiotic for its native host. IMPORTANCE The antibacterial activities of prodigiosin are well-established but, as a hydrophobic molecule, the mechanisms used to introduce it to susceptible microbes has never been studied. We found here, in contrast to violacein, another hydrophobic antibiotic that can be transferred using membrane vesicles (MVs), prodigiosin is also carried from Serratia marcescens in MVs released but its resulting activities were severely mitigated compared to the freely added compound, suggesting it is more tightly bound to the MVs than violacein. This led us to hypothesize that cell-to-cell contact is needed, which we demonstrate here. As well, we show de novo synthesis of prodigiosin is needed for it to be effective. As violacein- and prodigiosin-producing bacterial strains are both beneficial to amphibians, where they help protect the skin against pathogens, the findings presented here provide an important ecological perspective as they show the mechanisms used differ according to the antibacterial produced.


Asunto(s)
Prodigiosina , Serratia marcescens , Antibacterianos/farmacología , Prodigiosina/metabolismo , Prodigiosina/farmacología , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo , Staphylococcus aureus/metabolismo
8.
J Nat Prod ; 85(5): 1256-1266, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35438991

RESUMEN

A metabolomics/peptidomics and genomics approach, using UPLC-MSE, molecular networking, and genome mining, was used to describe the serrawettin W2 lipopeptide family produced by Serratia marcescens NP2. Seven known serrawettin W2 analogues were structurally elucidated along with 17 new analogues, which varied based on the first (fatty acyl length of C8, C10, C12, or C12:1), fifth (Phe, Tyr, Trp, or Leu/Ile), and sixth (Leu, Ile, or Val) residues. Tandem MS results suggested that the previously classified serrawettin W3 may be an analogue of serrawettin W2, with a putative structure of cyclo(C10H18O2-Leu-Ser-Thr-Leu/Ile-Val). Chiral phase amino acid analysis enabled the distinction between l/d-Leu and l-Ile residues within nine purified compounds. 1H and 13C NMR analyses confirmed the structures of four purified new analogues. Additionally, genome mining was conducted using Serratia genome sequences available on the NCBI database to identify the swrA gene using the antiSMASH software. NRPSpredictor2 predicted the specificity score of the adenylation-domain within swrA with 100% for the first, second, and third modules (Leu-Ser-Thr), 60-70% for the fourth module (Phe/Trp/Tyr/Val), and 70% for the fifth module (Val/Leu/Ile), confirming MSE data. Finally, antibacterial activity was observed for compounds 6 and 11 against a clinical Enterococcus faecium strain.


Asunto(s)
Lipopéptidos , Péptidos Cíclicos , Serratia marcescens , Secuencia de Aminoácidos , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Cromatografía Liquida , Genómica , Lipopéptidos/aislamiento & purificación , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Lipoproteínas , Metabolómica , Fragmentos de Péptidos , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Serratia marcescens/química , Espectrometría de Masas en Tándem
9.
Commun Biol ; 5(1): 355, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418619

RESUMEN

ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.


Asunto(s)
Proteínas de Escherichia coli , Serratia marcescens , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemo/metabolismo , Unión Proteica , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo
10.
BMC Microbiol ; 22(1): 26, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35026980

RESUMEN

BACKGROUND: Soil fertility decline and pathogen infection are severe issues for crop production all over the world. Microbes as inherent factors in soil were effective in alleviating fertility decrease, promoting plant growth and controlling plant pathogens et al. Thus, screening microbes with fertility improving and pathogen controlling properties is of great importance to humans. RESULTS: Bacteria Pt-3 isolated from tea rhizosphere showed multiple functions in solubilizing insoluble phosphate, promoting plant growth, producing abundant volatile organic compounds (VOCs) and inhibiting the growth of important fungal pathogens in vitro. According to the 16S rRNA phylogenetic and biochemical analysis, Pt-3 was identified to be Serratia marcescens. The solubilizing zone of Pt-3 in the medium of lecithin and Ca3(PO4)2 was 2.1 cm and 1.8 cm respectively. In liquid medium and soil, the concentration of soluble phosphorus reached 343.9 mg.L- 1, and 3.98 mg.kg- 1, and significantly promoted the growth of maize seedling, respectively. Moreover, Pt-3 produced abundant volatiles and greatly inhibited the growth of seven important phytopathogens. The inhibition rate ranged from 75.51 to 100% respectively. Solid phase micro-extraction coupled with gas chromatography tandem mass spectrometry proved that the antifungal volatile was dimethyl disulfide. Dimethyl disulfide can inhibit the germination of Aspergillus flavus, and severely destroy the cell structures under scanning electron microscopy. CONCLUSIONS: S. marcescens Pt-3 with multiple functions will provide novel agent for the production of bioactive fertilizer with P-solubilizing and fungal pathogens control activity.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Fosfatos/metabolismo , Serratia marcescens/metabolismo , Microbiología del Suelo , Camellia sinensis/microbiología , Fertilizantes/microbiología , Hongos/patogenicidad , Cromatografía de Gases y Espectrometría de Masas , Humanos , Filogenia , ARN Ribosómico 16S/genética , Rizosfera , Serratia marcescens/química , Serratia marcescens/genética , Solubilidad
11.
Prep Biochem Biotechnol ; 52(3): 344-350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34289781

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a major global health problem, and novel and effective antimicrobial drugs are urgently required to combat this life-threatening pathogen. Prodigiosin (PG) is a bacterial secondary metabolite with excellent anticancer and antibacterial properties. However, little is known about the antibacterial function of PG against MRSA. Therefore, the antibacterial efficacy of PG alone and PG in combination with different metal ions against clinic isolates of MRSA and methicillin-sensitive S. aureus (MSSA) strain was evaluated in the present study. The minimum inhibitory concentration of PG against both MRSA and MSSA was 0.25 µg/mL. However, 0.1 µg/mL PG showed a stronger inhibitory effect on MSSA cell growth (47.12%) than on MRSA cell growth (35.87%). Surprisingly, we observed a significant difference (p < 0.01) in membrane integrity between PG-treated MRSA and MSSA using the propidium iodide staining assay. Further, we found that in combination with PG, Zn2+, Al3+, and Cu2+ showed synergistic antibacterial effects against MRSA and MSSA. Our results could increase the current knowledge regarding the efficacy of PG in inhibiting the growth of different types of S. aureus clinical isolates and also offer a novel strategy for developing efficient antibacterial agents.


Asunto(s)
Antibacterianos/farmacología , Metales/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Prodigiosina/farmacología , Serratia marcescens/química , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana
12.
Molecules ; 26(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34684851

RESUMEN

The purpose of this study was to reuse cassava wastewater (CW) for scaled-up production, via the fermentation of prodigiosin (PG), and to conduct an evaluation of its bioactivities. PG was produced at the yield of high 6150 mg/L in a 14 L-bioreactor system, when the designed novel medium (7 L), containing CW and supplemented with 0.25% casein, 0.05% MgSO4, and 0.1% K2HPO4, was fermented with Serratia marcescens TNU01 at 28 °C in 8 h. The PG produced and purified in this study was assayed for some medical effects and showed moderate antioxidant, high anti-NO (anti-nitric oxide), and potential α-glucosidase inhibitory activities. Notably, PG was first reported as a novel effective α-glucosidase inhibitor with a low IC50 value of 0.0183 µg/mL. The commercial anti-diabetic drug acarbose was tested for comparison and had a lesser effect with a high IC50 value of 328.4 µg/mL, respectively. In a docking study, the cation form of PG (cation-PG) was found to bind to the enzyme α-glucosidase by interacting with two prominent amino acids, ASP568 and PHE601, at the binding site on the target enzyme, creating six linkages and showing a better binding energy score (-14.6 kcal/mol) than acarbose (-10.5 kcal/mol). The results of this work suggest that cassava wastewater can serve as a low-cost raw material for the effective production of PG, a potential antidiabetic drug candidate.


Asunto(s)
Inhibidores de Glicósido Hidrolasas/química , Prodigiosina/química , Serratia marcescens/química , Aguas Residuales/química , Acarbosa/química , Antioxidantes/química , Reactores Biológicos , Fermentación/fisiología , Hipoglucemiantes/química
13.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918541

RESUMEN

Prodigiosin is a red pigment produced by Serratia marcescens with anticancer, antimalarial, and antibacterial effects. In this study, we extracted and identified a red pigment from a culture of S. marcescens strain ZPG19 and investigated its effect on the growth performance and intestinal microbiota of Kunming mice. High-performance liquid chromatography/mass spectrometry revealed that the pigment had a mass-to-charge ratio (m/z) of 324.2160, and thus it was identified as prodigiosin. To investigate the effect of prodigiosin on the intestinal microbiota, mice (n = 5) were administered 150 µg/kg/d prodigiosin (crude extract, 95% purity) via the drinking water for 18 days. Administration of prodigiosin did not cause toxicity in mice. High-throughput sequencing analysis revealed that prodigiosin altered the cecum microbiota abundance and diversity; the relative abundance of Desulfovibrio significantly decreased, whereas Lactobacillus reuteri significantly increased. This finding indicates that oral administration of prodigiosin has a beneficial effect on the intestinal microbiota of mice. As prodigiosin is non-toxic to mouse internal organs and improves the mouse intestinal microbiota, we suggest that it is a promising candidate drug to treat intestinal inflammation.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Prodigiosina/farmacología , Serratia marcescens/química , Animales , Biodiversidad , Peso Corporal/efectos de los fármacos , Fermentación/efectos de los fármacos , Metaboloma , Ratones , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Filogenia , Prodigiosina/química , Serratia marcescens/metabolismo
14.
Molecules ; 26(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572696

RESUMEN

Inducible lysine decarboxylases (LDCs) are essential in various cellular processes of microorganisms and plants, especially under acid stress, which induces the expression of genes encoding LDCs. In this study, a novel Serratia marcesenes LDC (SmcadA) was successfully expressed in E. coli, purified and characterized. The protein had an optimal pH of 6 and a temperature of 40 °C and phylogenetic analysis to determine the evolution of SmcadA, which revealed a close relation to Enterobacteriaceae, Klebsiella sp., among others. The molecular weight of SmcadA was approximately 75 kDa after observation on SDS-PAGE and structural modeling showed the protein as a decamer, comprised of five interlinked dimers. The biocatalytic activity of the purified wild-type SmcadA (WT) was improved through site directed mutations and the results showed that the Arg595Lys mutant had the highest specific activity of 286.55 U/mg, while the Ser512Ala variant and wild-type SmcadA had 215.72 and 179.01 U/mg, respectively. Furthermore, molecular dynamics simulations revealed that interactions through hydrogen bonds between the protein residues and cofactor pyridoxal-5-phosphate (PLP) are vital for biocatalysis. Molecular Dynamics (MD) simulations also indicated that mutations conferred structural changes on protein residues and PLP hence altered the interacting residues with the cofactor, subsequently influencing substrate bioconversion. Moreover, the temperature also induced changes in orientation of cofactor PLP and amino acid residues. This work therefore demonstrates the successful expression and characterization of the purified novel lysine decarboxylase from Serratia marcesenes and provided insight into the mechanism of protein-cofactor interactions, highlighting the role of protein-ligand interactions in altering cofactor and binding site residue conformations, thus contributing to improved biocatalysis.


Asunto(s)
Carboxiliasas/química , Conformación Proteica , Serratia marcescens/enzimología , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/ultraestructura , Dominio Catalítico/genética , Escherichia coli/genética , Simulación de Dinámica Molecular , Serratia marcescens/química , Serratia marcescens/ultraestructura , Especificidad por Sustrato
15.
Analyst ; 146(2): 683-690, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33210668

RESUMEN

Carbon dots (CDs) have excellent application prospects in various fields such as fluorescent dyes, but expanding their application, especially in bioimaging and the detection of organic pollutants, is still a major research objective. In this study, fluorescent CDs were successfully synthesized via the hydrothermal method using Serratia marcescens KMR-3. The platform based on CDs-KMR3 exhibited excellent stability, good biocompatibility, and low biotoxicity, and can be effectively applied to the imaging of bacteria, fungi, plant cells, protozoa and mammalian cells, and can specifically stain the membranes of all tested cells. In this study, for the first time, bacteria-derived CDs were used to image the representative species of organisms ranging from lower-order to higher-order organisms, thereby proving the feasibility of the application of CDs in the fluorescence imaging of Paramecium caudatum. Additionally, CDs-KMR3 can rapidly diffuse into all the parts of the leaf through diffusion into the veins and intercellular interstitium in response to the induction of transpiration. Moreover, the data illustrate that CDs-KMR3 are likely to enter the digestive tracts of microworms by ingestion through the oral cavity and pharynx, and spread to the pseudocoelom and somatic cells, and finally to be excreted from microworms through the anus. Furthermore, this platform can be utilized as fluorescent probes for the rapid and highly selective detection of p-nitrophenol (p-NP). Moreover, this study contributed to the increased application of bacteria-derived CDs in bioimaging and detection of p-NP.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Imagen Molecular/métodos , Nanopartículas/química , Nitrofenoles/análisis , Imagen Óptica/métodos , Serratia marcescens/química , Células HeLa , Humanos , Límite de Detección , Nitrofenoles/química , Nitrofenoles/metabolismo
16.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 536-543, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135672

RESUMEN

Serratia marcescens is an opportunistic pathogen that commonly causes hospital-acquired infections and can utilize chitin-enriched nutrients as an alternative energy source. This study reports the identification of a chitoporin (ChiP), termed SmChiP, from the outer membrane of S. marcescens. Sequence alignment with genetically characterized ChiPs suggests that SmChiP is more closely related to the monomeric EcChiP from Escherichia coli than to the trimeric VhChiP from Vibrio campbellii. A single crystal of SmChiP grown under the condition 22%(w/v) PEG 8000, 0.1 M calcium acetate, 0.1 M MES pH 6.0 diffracted X-ray synchrotron radiation to 1.85 Šresolution. SmChiP co-crystallized with chitohexaose under the condition 19%(w/v) PEG 1500, 2 M ammonium phosphate monobasic, 0.1 M HEPES pH 7.0 diffracted X-rays to 2.70 Šresolution. Preliminary crystallographic analysis shows that both SmChiP crystal forms contain one molecule per asymmetric unit and that they belong to the tetragonal space groups P42212 and P41212, respectively. The SmChiP crystal has unit-cell parameters a = 82.97, b = 82.97, c = 189.53 Å, α = ß = γ = 90°, while the crystal of SmChiP in complex with chitohexaose has unit-cell parameters a = 73.24, b = 73.24, c = 213.46 Å, α = ß = γ = 90°. Initial assessment of the complex structure clearly revealed electron density for the sugar ligand. Structure determination of SmChiP in the absence and presence of chitohexaose should reveal the molecular basis of chitin utilization by S. marcescens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Porinas/química , Serratia marcescens/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Cristalización , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Humanos , Oligosacáridos/química , Porinas/genética , Porinas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Serratia marcescens/genética , Espectrometría de Masa por Ionización de Electrospray
17.
Immunity ; 52(4): 591-605.e6, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294405

RESUMEN

Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2-/- or RNASET2-/- but not RNASE2-/-RNASET2-/- cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation.


Asunto(s)
Endorribonucleasas/metabolismo , Monocitos/inmunología , Neutrófilos/inmunología , ARN Bacteriano/metabolismo , ARN Protozoario/metabolismo , Receptor Toll-Like 8/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Endorribonucleasas/inmunología , Eritrocitos/inmunología , Eritrocitos/parasitología , Escherichia coli/química , Escherichia coli/inmunología , Edición Génica/métodos , Humanos , Listeria monocytogenes/química , Listeria monocytogenes/inmunología , Monocitos/microbiología , Monocitos/parasitología , Neutrófilos/microbiología , Neutrófilos/parasitología , Plasmodium falciparum/química , Plasmodium falciparum/inmunología , Cultivo Primario de Células , Estabilidad del ARN , ARN Bacteriano/inmunología , ARN Protozoario/inmunología , Serratia marcescens/química , Serratia marcescens/inmunología , Staphylococcus aureus/química , Staphylococcus aureus/inmunología , Streptococcus/química , Streptococcus/inmunología , Células THP-1 , Receptor Toll-Like 8/inmunología
18.
Biopolymers ; 111(1): e23339, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31688961

RESUMEN

Chitin-binding protein 21 (CBP21) from Serratia marcescens is a lytic polysaccharide monooxygenase that contains a copper ion as a cofactor. We aimed to elucidate the unfolding mechanism of CBP21 and the effects of Cu2+ on its structural stability at pH 5.0. Thermal unfolding of both apo- and holoCBP21 was reversible. ApoCBP21 unfolded in a simple two-state transition manner. The peak temperature of the DSC curve, tp , for holoCBP21 (74.4°C) was about nine degrees higher than that for apoCBP21 (65.6°C). The value of tp in the presence of excess Cu2+ was around 75°C, indicating that Cu2+ does not dissociate from the protein molecule during unfolding. The unfolding mechanism of holoCBP21 was considered to be as follows: N∙Cu2+ ⇌ U∙Cu2+ , where N and U represent the native and unfolded states, respectively. Urea-induced equilibrium unfolding analysis showed that holoCBP21 was stabilized by 35 kJ mol-1 in terms of the Gibbs energy change for unfolding (pH 5.0, 25°C), compared with apoCBP21. The increased stability of holoCBP21 was considered to result from the structural stabilization of the protein-Cu2+ complex itself.


Asunto(s)
Proteínas Bacterianas/química , Cobre/química , Péptidos y Proteínas de Señalización Intracelular/química , Serratia marcescens/enzimología , Proteínas Bacterianas/aislamiento & purificación , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Coenzimas/química , Concentración de Iones de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular/aislamiento & purificación , Conformación Proteica , Desplegamiento Proteico , Serratia marcescens/química , Espectrometría de Fluorescencia , Temperatura , Termodinámica , Urea/química
19.
Microbiol Res ; 229: 126329, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31518853

RESUMEN

The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing. The swrW gene (serrawettin W1 synthetase) was detected in all the screened pigmented strains and one non-pigmented strain and primers were designed for the detection of the swrA gene (non-ribosomal serrawettin W2 synthetase), which was detected in nine non-pigmented strains. Crude extracts obtained from S. marcescens P1, NP1 and NP2 were chemically characterised using ultra-performance liquid chromatography coupled to electrospray ionisation mass spectrometry (UPLC-ESI-MS), which revealed that P1 produced serrawettin W1 homologues and prodigiosin, while NP1 produced serrawettin W1 homologues and glucosamine derivative A. In contrast, serrawettin W2 analogues were predominantly identified in the crude extract obtained from S. marcescens NP2. Both P1 and NP1 crude extracts displayed broad-spectrum antimicrobial activity against clinical, food and environmental pathogens, such as multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Cryptococcus neoformans. In contrast, the NP2 crude extract displayed antibacterial activity against a limited range of pathogenic and opportunistic pathogens. The serrawettin W1 homologues, in combination with prodigiosin and glucosamine derivatives, produced by pigmented and non-pigmented S. marcescens strains, could thus potentially be employed as broad-spectrum therapeutic agents against multidrug-resistant bacterial and fungal pathogens.


Asunto(s)
Antibacterianos/farmacología , Depsipéptidos/farmacología , Lipoproteínas/farmacología , Péptidos Cíclicos/farmacología , Prodigiosina/farmacología , Serratia marcescens/química , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Depsipéptidos/química , Depsipéptidos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Prodigiosina/química , Prodigiosina/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Metabolismo Secundario , Serratia marcescens/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Tensoactivos/farmacología
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117137, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31176153

RESUMEN

Lipases are ubiquitous enzymes and widespread in nature. They have been widely purified as one of the most important enzymes in molecular biosciences and biotechnology. In this paper, the extracellular lipase was separated from Serratia marcescens. The separated enzyme was purified partially by ammonium sulfate precipitation, dialysis and gel filtration chromatography. Presence of the lipase in chromatography fractions was assayed by the hydrolysis of paranitrophenyl palmitate (pNPP) as substrate. The excitation and emission (EEM) fluorescence spectra of purified lipase in chromatographic fractions were investigated. The study demonstrates an application of fluorescence spectroscopy, combined with multivariate regression methods, to the analysis of fluorescent lipase component. N-way partial least squares (N-PLS) was utilized to show the importance of region selection in calibration modeling of the data. Genetic algorithm (GA) optimization was applied to improve the performance of radial basis function network based regression model. RBF-ANN was used to calibrate and predict lipase activity. The analytical performance of RBF-ANN method was characterized by Q^2parameter. The value of Q^2 was 0.919. The proposed method was successfully applied to the analysis of protein containing fractions and in order to explore the three way fluorescence data array from separated fractions, parallel factor analysis (PARAFAC) was applied. The fluorescence signal was resolved into excitation and emission profiles of the pure fluorescent compounds.


Asunto(s)
Lipasa/análisis , Serratia marcescens/enzimología , Algoritmos , Precipitación Química , Cromatografía en Gel , Humanos , Hidrólisis , Análisis de los Mínimos Cuadrados , Lipasa/aislamiento & purificación , Lipasa/metabolismo , Análisis Multivariante , Palmitatos/metabolismo , Infecciones por Serratia/microbiología , Serratia marcescens/química , Serratia marcescens/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...